Refereed Publications
  1. Appearances and statistics of coronal cavities during the ascending phase of Solar Cycle 24,” Ap. J., 2015, in press, N. Karna, W. D. Pesnell, and J. Zhang.
  2. “Study of the 3D geometric structure and temperature of a coronal cavity using the Limb Synoptic Map method,” Ap. J., 2015, in press, N. Karna, J. Zhang, W. D. Pesnell, S. A. Hess Webber.
  3. Solar Dynamics Observatory (SDO),” in Handbook of Cosmic Hazards and Planetary Defense, ed. Firooz Allahdadi and Joseph N. Pelton (New York: Springer Reference), 15 pages, 2015.
  4. Areas of polar coronal holes from 1996 through 2010,” Solar Phys., 289, 4047–4067, 2014, S. A. Hess Webber, N. Karna, W. D. Pesnell, and Michael Kirk.
  5. Deciphering solar magnetic activity. I. On the relationship between the sunspot cycle and the evolution of small magnetic features,” Ap. J., 792, eid: 12, 2014, S. W. McIntosh, X. Wang, R. J. Leamon, A. R. Davey, R. Howe, L. D. Krista, A. V. Malanushenko, R. S. Markel, J. W. Cirtain, J. B. Gurman, W. D. Pesnell, and M. J. Thompson.
  6. Using polar coronal hole area measurements to determine the solar polar magnetic field reversal in Solar Cycle 24,” Solar Phys., 289, 3381–3390, 2014, N. Karna, S. A. Hess Webber, and W. D. Pesnell.
  7. The time-dependent chemistry of cometary debris in the solar corona,” Ap. J., 785, eid: 50, 1–10, 2014, W. D. Pesnell and P. Bryans.
  8. Predicting Solar Cycle 24 with geomagnetic precursor pairs,” Solar Phys., 289, 2317–2331, 2014.
  9. Time-series analysis of supergranule characteristics at solar minimum,” Solar Phys., 289, 1101–1113, 2014, Peter E. Williams and W. D. Pesnell.
  10. Analysis of supergranule sizes and velocities using Solar Dynamics Observatory (SDO)/Helioseismic Magnetic Imager (HMI) and Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI) Dopplergrams,” Solar Phys., 289, 11–25, 2014, P. E. Williams, W. D. Pesnell, Shannon Lee, and John Beck.
  11. Inter-hemispheric coupling during northern polar summer periods of 2002–2010 using TIMED/SABER measurements,” J. A. S.-T. P., 104, 277–284, 2013, R. A Goldberg, A. G. Feofilov, W. D. Pesnell, and A. A. Kutepov.
  12. The Solar Dynamics Observatory after three years in orbit,” in: Aerospace Conference, 2013 IEEE, pp. 1–9, 2013, D. Poland, F. M. Ekinci, D. Fink, and W. D. Pesnell.
  13. Solar cycle predictions (Invited review),” Solar Phys., 281, 507–532, 2012.
  14. The EUV emission from sun-grazing comets,” Ap. J., 760, eid: 8, 1–18, 2012, P. Bryans and W. D. Pesnell.
  15. CO22)-O quenching rate coefficient derived from coincidental SABER/TIMED and Fort Collins lidar observations of the mesosphere and lower thermosphere,” Atmos. Chem. Phys., 12, 9013–9023, 2012, A. G. Feofilov, A. A. Kutepov, C.-Y. She, A. K. Smith, W. D. Pesnell, and R. A. Goldberg.
  16. “NASA's Solar Dynamics Observatory (SDO): A systems approach to a complex mission,” in: Aerospace Conference, 2012 IEEE, pp. 1–12, 2012, J. A. Ruffa, D. K. Ward, L. M. Bartusek, M. Bay, P. J. Gonzales, and W. D. Pesnell.
  17. Destruction of Sun-grazing comet C/2011 N3 (SOHO) within the low solar corona,” Science, 335, 324–328, 2012, C. J. Schrijver, J. C. Brown, K. Battams, P. Saint-Hilaire, W. Liu, H. Hudson, and W. D. Pesnell.
  18. The Solar Dynamics Observatory (SDO) Education and Outreach (E/PO) Program: Changing perceptions one program at a time,” Solar Phys., 275, 391–406, 2012, E. Drobnes, A. Littleton, W. D. Pesnell, S. Buhr, K. Beck, R. Durscher, S. Hill, M. McCaffrey, D.E. McKenzie, D. Myers, D. Scherrer, M. Wawro, and A. Wolt.
  19. The Solar Dynamics Observatory (SDO),” Solar Phys., 275, 3–15, 2012, W. D. Pesnell, B. J. Thompson, and P. C. Chamberlin.
  20. Comparisons of supergranule characteristics during the solar minima of Cycles 22/23 and 23/24,” Solar Physics, 270, 125–136, 2011, Peter E. Williams and W. D. Pesnell.
  21. Properties of supergranulation during the solar minima of Cycles 22/23 and 23/24,” J. Phys.: Conf. Ser., 271, 012082, 2011, Peter E. Williams and W. D. Pesnell.
  22. Photospheric manifestations of supergranules during the last two solar minima,” in SOHO-23: Understanding a Peculiar Solar Minimum, ed. S. R. Cranmer, J. T. Hoeksema, and J. L. Kohl, ASP Conference Series, 428, 127–131, 2010, P. E. Williams and W. D. Pesnell.
  23. Daytime SABER/TIMED observations of water vapor in the mesosphere: retrieval approach and first results,” Atmos. Chem. Phys., 9, 8139–8158, 2009 and Atmos. Chem. Phys. Discuss., 9, 13943–13997, 2009, A. G. Feofilov, A. A. Kutepov, W. D. Pesnell, R. A. Goldberg, B. T. Marshall, L. L. Gordley, M. García-Comas, M. López-Puertas, R. O. Manuilova, V. A. Yankovsky, S. V. Petelina, and J. M. Russell, III.
  24. Automated detection of EUV polar coronal holes during Solar Cycle 23,” Solar Physics, 257, 99–112, 2009, M. S. Kirk, W. D. Pesnell, C. A. Young, and S. A. Hess Webber.
  25. Predictions of solar cycle 24,” Solar Physics, 252, 209–220, 2008.
  26. Seasonal variations of magnesium atoms in the mesosphere-thermosphere,” Geophys. Res. Lett., 35, L06103, 2008, J. Correira, A. C. Aikin, J. M. Grebowsky, W. D. Pesnell, and J. P. Burrows.
  27. Chromospheric lines as diagnostics of stellar oscillations,” in Precision Spectroscopy in Astrophysics, Proceedings of the ESO/Lisbon/Aveiro Conference held in Aveiro, Portugal, 11-15 September 2006, Princeton Series in Astrophysics, eds. N. C. Santos, L. Pasquini, A. C. M. Correia, and M. Romanielleo, 311–312, 2008, D. Paulson, W. D. Pesnell, L. Deming, M. Snow, T. Metcalfe, T. Woods, and B. Hesman.
  28. Solar cycle 24 and the solar dynamo,” Schatten, K. H., and W. D. Pesnell, Proc. 20th International Symposium on Space Flight Dynamics, 2007.
  29. SABER temperature observations in the summer polar mesosphere and lower thermosphere: Importance of accounting for the CO2 v2 quanta V-V exchange,” Geophys. Res. Lett., 33, 21809–21914, 2006, Kutepov, A. A., A. G. Feofilov, B. T. Marshall, L. L. Gordley, W. D. Pesnell, R. A. Goldberg, and J. M. Russell.
  30. Temporal evolution of the vertical content of metallic ion and neutral species,” J. A. S.-T. P., 67, 1238–1244, 2005, A. C. Aikin, J. M. Grebowsky, J. P. Burrows, J. Correira, and W. D. Pesnell.
  31. Watching meteors at Triton,” Icarus, 169, 482–491, 2004, W. D. Pesnell, J. M. Grebowsky, and A. L. Weisman.
  32. SABER observations of mesospheric temperatures and comparisons with falling sphere measurements taken during the 2002 summer MaCWAVE campaign,” Geophys. Res. Lett., 31, L03105, 2004, C. J. Mertens, F. J. Schmidlin, R. A. Goldberg, E. E. Remsberg, W. D. Pesnell, J. M. Russell, M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, and L. L. Gordley.
  33. Occultation of π Arietis by asteroid (828) Lindemannia on November 10 2002,” Occultation Newsletter, International Occultation Timing Association (IOTA), 9, 9–12, 2003, P. V. Sada, R. Nugent, P. Maley, R. Frankenberger, S. Preston, D. Dunham, W. D. Pesnell.
  34. Evolution of relativistic electrons during a magnetic storm as seen in low-Earth orbit,” Adv. Space Res., 31, 1059–1062, 2003, W. D. Pesnell, R. A. Goldberg, D. L. Chenette, M. Schulz, and E. E. Gaines.
  35. Meteoric material—an important component of planetary atmospheres,” in Atmospheres in the Solar System: Comparative Aeronomy, Geophysical Monograph, 130, ed. M. Mendillo, A. Nagy, and H. Waite (Washington, DC: AGU), pp. 235–244, 2002, J. M. Grebowsky, J. I. Moses, and W. D. Pesnell.
  36. Fluxes of relativistic electrons in low-Earth orbit during the decline of solar cycle 22,” IEEE Trans. Nuclear Science, 48 (6), 2016–2021, 2001.
  37. Growth and decay of relativistic electrons during a magnetic storm,” J. Geophys. Res., 106, 30,047–30,086, 2001, W. D. Pesnell, R. A. Goldberg, D. L. Chenette, E. E. Gaines, and M. Schulz.
  38. “Meteoric ions in planetary ionospheres,” Adv. Space Res., 27, 1807–1814, 2001, W. D. Pesnell and J. M. Grebowsky.
  39. Meteoric ions in the atmosphere of Jupiter,” Icarus, 150, 261–278, 2001, Y. H. Kim, W. D. Pesnell, J. M. Grebowsky, and J. L. Fox.
  40. Variation of mesospheric ozone during the highly relativistic electron event in May 1992 as measured by the HRDI instrument on UARS,” J. Geophys. Res., 105, 22,943–22,953, 2000, W. D. Pesnell, R. A. Goldberg, C. H. Jackman, D. L. Chenette, and E. E. Gaines.
  41. “Dimensiones del asteroide (105) Artemis derivadas de ocultaciones de estrellas,” Ciencia UANL, 3, 191–195, 2000, Pedro Valdés Sada and W. D. Pesnell.
  42. Meteoric magnesium ion layers in the Martian atmosphere,” J. Geophys. Res., 105, 1695–1707, 2000, W. D. Pesnell and J. M. Grebowsky.
  43. Theoretical Stellar Evolution,” in Allen's Astrophysical Quantities, 4th ed., ed. A. N. Cox (New York: Springer–Verlag), pp. 499–522, 2000, A. N. Cox, W. D. Pesnell, and S. A. Becker.
  44. “Barium, CH, and subgiant CH stars,” in Allen's Astrophysical Quantities, 4th ed., ed. A. N. Cox (New York: Springer–Verlag), pp. 416–417, 2000.
  45. “Energetic electrons and their effects on stratospheric and mesospheric ozone in May 1992,” in Science Across the Stratopause, Geophysical Monograph, 123, ed. D. E. Siskind, S. D. Eckermann, and M. E. Summers (Washington, DC: AGU), pp. 137–142, 2000, W. D. Pesnell, R. A. Goldberg, D. L. Chenette, E. E. Gaines, and C. H. Jackman.
  46. “Meteor showers: Modeled and measured effects in the ionosphere,” AIAA, 99–0503, 1–10, 1999, J. M. Grebowsky and W. D. Pesnell.
  47. A search of UARS data for ozone depletions caused by the highly–relativistic electron precipitation events of May 1992,” J. Geophys. Res., 104, 165–176, 1999, W. D. Pesnell, R. A. Goldberg, C. H. Jackman, D. L. Chenette, and E. E. Gaines.
  48. “Impact of meteoric material on the terrestrial atmosphere,” The CEDAR Post, 34, 22, 1998, W. D. Pesnell and J. M. Grebowsky.
  49. Do meteor showers significantly perturb the ionosphere?,” J. Atmos. Solar–Terr. Phys., 60, 607–615, 1998, J. M. Grebowsky, R. A. Goldberg, W. D. Pesnell.
  50. Uptake coefficient of charged aerosols: Implications for atmospheric chemistry,” Geophys. Res. Lett., 25, 1309–1312, 1998, A. C. Aikin and W. D. Pesnell.
  51. A new graphical interface for the Paczynski stellar evolution code,” in A Half Century of Stellar Pulsation Interpretations: A Tribute to Arthur N. Cox, ed. P. A. Bradley and J. A. Guzik, ASP Conference Series, 135, 69–70, 1998, A. P. Odell and W. D. Pesnell.
  52. The evolutionary and pulsational characteristics of Alpha Virginis including turbulent diffusive mixing,” in A Half Century of Stellar Pulsation Interpretations: A Tribute to Arthur N. Cox, ed. P. A. Bradley and J. A. Guzik, ASP Conference Series, 135, 22–23, 1998, W. D. Pesnell and A. P. Odell.
  53. Pioneer Venus Orbiter measurements of solar EUV flux during solar cycles 21 and 22,” Solar Physics, 177, 203–216, 1998, K. K. Mahajan, H. O Upadhyay, N. K. Sethi, W. R. Hoegy, W. D. Pesnell, and L. H. Brace.
  54. “The prodigal Sun,” Mercury, 27, 32–34, 1998.
  55. A comparison of solar EUV flux from Langmuir probe photoelectron measurements on the Pioneer Venus Orbiter with other solar activity indicators,” Adv. Space Res., 20, 187–190, 1997, K. K. Mahajan, W.R. Hoegy, W. D. Pesnell, L. H. Brace, and N. K. Sethi.
  56. Alpha Virginis: A test of upper main sequence structure and evolution,” in 32nd Liege International Astrophysical Colloquium: Stellar evolution – What Should be Done?, eds. A. Noels, D. Fraipont-Caro, M. Gabriel, N. Grevesse, and P. Demarque, 417–422, 1995, A. P. Odell and W. D. Pesnell.
  57. “Pioneer Venus Ipe Solar EUV Flux Index 1979–1992,” Solar–Geophysical Data, Comprehensive Reports, 615, Part II, 39–55, 1995, W. R. Hoegy, and W. D. Pesnell.
  58. High–speed correction factor to the O+–O resonance charge exchange collision frequency,” Ann. Geophys., 13, 253–255, 1995, K.   and W. D. Pesnell.
  59. O+–O collision frequency in high speed flows,” J. Geophys. Res., 99, 21,375–21,382, 1994, W. D. Pesnell, K. Omidvar, W. R. Hoegy, and L. E. Wharton.
  60. Accuracy of O+–O collision cross–section deduced from ionosphere–thermosphere observations,” Geophys. Res. Lett., 21, 2429–2432, 1994, C. A. Reddy, W. R. Hoegy, W. D. Pesnell, H. G. Mayr, and C. O. Hines.
  61. An early solar dynamo prediction: Cycle 23 ∼ cycle 22,” Geophys. Res. Lett., 20, 2275–2278, 1993, K. Schatten and W. D. Pesnell.
  62. Momentum transfer collision frequency of O+–O,” Geophys. Res. Let., 20, 1343–1346, 1993, W. D. Pesnell, K. Omidvar, and W. R. Hoegy.
  63. How active was solar cycle 22?,” Geophys. Res. Let., 20, 1335–1338, 1993, W. R. Hoegy, W. D. Pesnell, T. N. Woods, and G. J. Rottman.
  64. “A catalogue of line profile variations due to nonradial pulsations,” Ap. J., in press, P. W. Jones, W. D. Pesnell, C. J. Hansen, and M. A. Smith.
  65. “The extreme ultraviolet variations of solar cycle 22,” Proc. of the Ninth Workshop on the Vacuum Ultraviolet Calibration of Space Experiments (Boulder, CO: HAO), 1993, 280–283, W. D. Pesnell, W. R. Hoegy, T. N. Woods, and G. J. Rottman.
  66. Properties of thermospheric gravity waves on earth, Venus and Mars,” in Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions, Geophysical Monograph, 66 (Washington, DC: AGU), 91–111, 1992, H. G. Mayr, I. Harris, and W. D. Pesnell.
  67. Dynamical interactions between the middle atmosphere and thermosphere,” Adv. Sp. Res., 12, (10)335–(10)343, 1992, H. G. Mayr, I. Harris, W. D. Pesnell.
  68. “Transfer function model (TFM) and gravity waves,” J. Geomag. and Geoel., 43, Suppl., 525–536, 1991, H. G. Mayr, I. Harris, F. A. Herrero, and W. D. Pesnell.
  69. Thermospheric gravity waves: observations and interpretations using the transfer function model (TFM),” Sp. Sci. Rev., 54, 297–375, 1990, H. G. Mayr, I. Harris, F. A. Herrero, N. W. Spencer, F. Varosi, and W. D. Pesnell.
  70. Nonradial, nonadiabatic stellar pulsations,” Ap. J., 363, 227–233, 1990.
  71. Properties of Eötvös spheres,” Ap. J., 344, 851–855, 1989.
  72. Some thoughts on the rapidly oscillating Ap stars,” Ap. J., 339, 1038–1043, 1989.
  73. On the possibility of detecting weak magnetic fields in variable white dwarfs,” Ap. J., 336, 403–408, 1989, P. W. Jones, W. D. Pesnell, C. J. Hansen, and S. D. Kawaler.
  74. Pulsations of white dwarf stars with thick hydrogen or helium surface layers,” in Advances in Helio– and Asteroseismology, IAU Symposium 123, eds. Christiansen–Dalsgaard and Frandsen, 333–337, 1988, A. N. Cox, S. Starrfield, R. B. Kidman, and W. D. Pesnell.
  75. “A comparison of ionizing equations of state,” Contributions of the Observatory, New Mexico State University, 1988–1 (Las Cruces, NM: NMSU), 1988.
  76. Weight functions in adiabatic stellar pulsations. I. Radially symmetric motion,” Publ. Astron. Soc. Pac., 99, 975–985, 1987.
  77. Pulsations of white dwarf stars with thick hydrogen or helium surface layers,” Ap. J., 317, 303–324, 1987, A. N. Cox, S. Starrfield, R. B. Kidman, and W. D. Pesnell.
  78. Ensampling white dwarf g–modes,” in Stellar Pulsation, eds. A. N. Cox, W. M. Sparks, and S. G. Starrfield (Springer–Verlag: New York), 363–366, 1987.
  79. Pulsations of white dwarf stars with thick hydrogen or helium surface layers,” in Stellar Pulsation, eds. A. N. Cox, W. M. Sparks, and S. G. Starrfield (Springer–Verlag: New York), 358–362, 1987, A. N. Cox, S. Starrfield, R. B. Kidman, and W. D. Pesnell.
  80. A new driving mechanism for stellar pulsations,” Ap. J., 314, 598–604, 1987.
  81. The structure of the thermal modes in pulsating stars,” Ap. J., 303, 740–748, 1986, W. D. Pesnell and J. R. Buchler.
  82. Brunt–Väisälä frequency and semi–convection,” Ap. J., 301, 204–206, 1986.
  83. The connection between non–radial pulsations and stellar winds in massive stars,” Publ. Astron. Soc. Pac., 98, 29, 1986, D. C. Abbott, C. D. Garmany, C. J. Hansen, H. F. Henrichs, and W. D. Pesnell.
  84. On one–zone models of stellar pulsation,” Ap. J., 299, 161–166, 1985.
  85. An analysis of the nonradial pulsations of the central star of the planetary nebula K1–16,” Ap. J., 293, L23–L27, 1985, S. Starrfield, A. N. Cox, R. B. Kidman, and W. D. Pesnell.
  86. Spherical oscillation patterns: The movie,” Am. J. Phys., 53, 579–580, 1985.
  87. Observable quantities of nonradial pulsations in the presence of slow rotation,” Ap. J., 292, 238–248, 1985.
  88. Rotational mode splitting about an inclined axis,” Ap. J., 286, L43–L45, 1984, M. L. Aizenman, W. D. Pesnell, C. J. Hansen, and J. P. Cox.
  89. Thermal response of stellar envelopes during nonradial pulsation,” Ap. J., 285, 778–783, 1984.
  90. Critique of the iterative theory of stellar pulsations,” Ap. J., 283, 316–320, 1984, J. R. Buchler and W. D. Pesnell.
  91. Nonradial instability strips based on carbon and oxygen partial ionization in hot, evolved stars,” Ap. J., 281, 800–810, 1984, S. Starrfield, A. N. Cox, R. B. Kidman, and W. D. Pesnell.
  92. Quantitative features of the convection–pulsation interaction,” Proceedings of the 25th Liege International Astrophysical Colloquium, July 1984, eds. M. Gabriel and A. Noels, 294–297.
  93. Thermal effects in stellar pulsations,” Ph.D. dissertation, University of Florida, 1983.
  94. The discovery of nonradial instability strips for hot, evolved stars,” Ap. J., 268, L27–L32, 1983, S. Starrfield, A. N. Cox, S. W. Hodson, and W. D. Pesnell.
  95. Application of two–time methods in stellar pulsations,” in Pulsations in Classical and Cataclysmic Variable Stars, papers presented at a conference held in Boulder, CO, June 1–4, 1982, eds. J. P. Cox and C. J. Hansen (JILA: Boulder, CO), 216–220, 1982, W. D. Pesnell, O. Regev, and J. R. Buchler.
  96. Linear theory radial and nonradial pulsations of DA white dwarf stars,” in Pulsations in Classical and Cataclysmic Variable Stars, papers presented at a conference held in Boulder, CO, June 1–4, 1982, eds. J. P. Cox and C. J. Hansen (JILA: Boulder, CO), 78–82, 1982, S. Starrfield, A. N. Cox, S. W. Hodson, and W. D. Pesnell.
  97. Stability analysis of slow spherical motion for a gravitating fluid,” Ap. J., 243, 617–624, 1981, M. Livio, J. R. Buchler, and W. D. Pesnell.
  98. Spherical oscillation patterns,” Sp. Sci. Rev., 27, 473–474, 1980, J. M. Coggins and W. D. Pesnell.
  99. The light and velocity curves for BW Vulpeculae,” Sp. Sci. Rev., 27, 337–343, 1980, W. D. Pesnell and A. N. Cox.
Return to Résumé Return to Nomad Research, Inc.